In []:

import numpy as np
import matplotlib.pyplot as plt
gmatplotlib inline

Before we begin!

In [2]:

One of the most important basics to remember about matplotlib is that
Every situation is DIFFERENT!

Each plot has its own parameters

And the type of data you are using will make a difference too

So don't muck about trying to make a barplot based on your knowledge of line plots...!

Read and understand the documentation first :)
The gallery provides the best point of entry: https://matplotlib.org/gallery.html

Simple plotting - line and bar charts

In [3]:

Oout[3]:

Let's generate some basic values to use in the simplest charts:
valuesl = np.random.randint(0, 10, 5)

values2 = np.random.randint(0, 10, 5)

valuesl, values2

(array([8, 4, 6, 3, 31), array([4, 8, 6, 1, 4]))

In [4]: plt.plot(valuesl) # A very simple line chart with 1 set of values

Out[4]: [<matplotlib.lines.Line2D at 0x1141lcc6d8>]

In [5]: plt.plot(valuesl) # If we have 2 sets of values we can plot the second set like this
plt.plot(values2)

Out[5]: [<matplotlib.lines.Line2D at 0x1142d30£f0>]

In [6]: plt.bar(np.arange(5), height = valuesl, width = 0.3,) # A very simple bar chart with 1 set of values

Out[6]: <Container object of 5 artists>

G -
5 -
4 -
3 4
2 4
14
o
0 1 2 3 4

valuesl, width

In [7]: plt.bar(np.arange(5), height 0.3,) # If we plot again for the second set of values, howeve
r,

plt.bar(np.arange(5), height 0.3,) # it won't work! The 2 graphs are overlaid - urrk!

values2, width

Out[7]: <Container object of 5 artists>

B
74
G -
5 -
4 -
3 4
2 4
1
o
0 1 2 3 4

In [8]: plt.bar(np.arange(len(valuesl)), height = valuesl, width = 0.3)
plt.bar(np.arange(len(values2)) + 0.3, height = values2, width = 0.3,)

Because our first parameter is the x co-ordinates of the bars, we can adjust this so that the next bar
starts at the end of the previous bar, and voila!

Out[8]: <Container object of 5 artists>

Other commonly used plots

In [15]: # The pie
plt.pie(valuesl, labels = ["John", "Jane", "Mary", "Susan", "Harold"], autopct='%1.1£%%')

plt.show()

Harold

In [17]: # The scatter
values3 = np.random.randn(500)
values4 = np.random.randn(500)
plt.scatter(values3, values4)

Out[l7]: <matplotlib.collections.PathCollection at 0x11b3c87£f0>

In [20]: # The histogram
values5 = np.random.normal(27000, 15000, 10000)
plt.hist(values5, 20)
plt.show()

1400

1200

1000 4

800 1

200 -

400 -

200 1

—20000 0 20000 40000 GO000 80000

Making it pretty - background image
In [22]: import matplotlib.image as mpimg

In [23]: img = mpimg.imread("polar bear.png") #.PNG as a format definitely works...

In [24]: values3 = np.random.randint(0,10, 13)
plt.imshow(img, extent=[-0.5, 13, 0, 10]) # Play around with extent to get the image covering the right area
plt.plot(values3, color='chartreuse', linestyle='solid', marker='o',
markerfacecolor='fuchsia', markersize=12)
plt.show()

10

