
In []: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Before we begin!

In [2]: # One of the most important basics to remember about matplotlib is that
Every situation is DIFFERENT!
Each plot has its own parameters
And the type of data you are using will make a difference too
So don't muck about trying to make a barplot based on your knowledge of line plots...!
Read and understand the documentation first :)
The gallery provides the best point of entry: https://matplotlib.org/gallery.html

Simple plotting - line and bar charts

In [3]: # Let's generate some basic values to use in the simplest charts:
values1 = np.random.randint(0, 10, 5)
values2 = np.random.randint(0, 10, 5)
values1, values2

Out[3]: (array([8, 4, 6, 3, 3]), array([4, 8, 6, 1, 4]))

In [4]: plt.plot(values1) # A very simple line chart with 1 set of values

In [5]: plt.plot(values1) # If we have 2 sets of values we can plot the second set like this
plt.plot(values2)

Out[4]: [<matplotlib.lines.Line2D at 0x1141cc6d8>]

Out[5]: [<matplotlib.lines.Line2D at 0x1142d30f0>]

In [6]: plt.bar(np.arange(5), height = values1, width = 0.3,) # A very simple bar chart with 1 set of values

In [7]: plt.bar(np.arange(5), height = values1, width = 0.3,) # If we plot again for the second set of values, howeve
r,
plt.bar(np.arange(5), height = values2, width = 0.3,) # it won't work! The 2 graphs are overlaid - urrk!

Out[6]: <Container object of 5 artists>

Out[7]: <Container object of 5 artists>

In [8]: plt.bar(np.arange(len(values1)), height = values1, width = 0.3)
plt.bar(np.arange(len(values2)) + 0.3, height = values2, width = 0.3,)

Because our first parameter is the x co-ordinates of the bars, we can adjust this so that the next bar
starts at the end of the previous bar, and voila!

Other commonly used plots

Out[8]: <Container object of 5 artists>

In [15]: # The pie
plt.pie(values1, labels = ["John", "Jane", "Mary", "Susan", "Harold"], autopct='%1.1f%%')
plt.show()

In [17]: # The scatter
values3 = np.random.randn(500)
values4 = np.random.randn(500)
plt.scatter(values3, values4)

Out[17]: <matplotlib.collections.PathCollection at 0x11b3c87f0>

In [20]: # The histogram
values5 = np.random.normal(27000, 15000, 10000)
plt.hist(values5, 20)
plt.show()

Making it pretty - background image

In [22]: import matplotlib.image as mpimg

In [23]: img = mpimg.imread("polar_bear.png") #.PNG as a format definitely works...

In [24]: values3 = np.random.randint(0,10, 13)
plt.imshow(img, extent=[-0.5, 13, 0, 10]) # Play around with extent to get the image covering the right area
plt.plot(values3, color='chartreuse', linestyle='solid', marker='o',
 markerfacecolor='fuchsia', markersize=12)
plt.show()

