In [1]: import pandas as pd

In [2]: listl = ["Jane", "John", "June", "Jim", "Jay"]
list2 ["Ford", "BMW", "Mini", "Mercedes", "Toyota"]
list3 = ["Blue", "Grey", "Red", "White", "White"]
list4 = ["1.61", "2.01", "1.61", "2.21", "1.21"]
dfl = pd.DataFrame({"Make":1ist2, "Color":1list3, "Capacity":1list4}, index = listl)

df1l
Out[2]:

Capacity | Color Make
Jane | 1.6l Blue |Ford
John | 2.0l Grey |BMW
June | 1.6l Red |Mini
Jim | 2.2 White | Mercedes
Jay |1.2] White | Toyota

Updating values via indexation

In [3]:

Out[3]:

In [4]:

Oout[4]:

dfl.loc["Jane", "Color"] =
df1l

Capacity| Color Make
Jane | 1.6l Orange |Ford
John | 2.0l Grey BMW
June | 1.6l Red Mini
Jim |2.2]| White [Mercedes
Jay |1.2] White |Toyota

dfl.loc[dfl["Color"].isin(["White"]),

e
dfl

Capacity Color Make
Jane | 1.6l Orange |Ford
John | 2.0l Grey BMW
June | 1.6l Red Mini
Jim |2.2| Off-White | Mercedes
Jay |1.2] Off-White | Toyota

Replacing values

"Orange" # Jane gives us the rows to update,

Color tells us which column to update

"Color"] = "Off-White" # The first part gives us the rows to update,
The second part tells us which column to updat

An example across the entire dataframe, replacing entire cell values

In [5]: dfl.replace(["Off-White", "Grey"], ["White", "Silver"], inplace = True)

dfl
out[5]:

Capacity| Color Make
Jane | 1.6l Orange |Ford
John | 2.0l Silver |BMW
June | 1.6l Red Mini
Jim (2.2 White |Mercedes
Jay |1.2] White |Toyota

An example for a single series, replacing partial cell values

In [6]: dfl["Capacity"].replace({'l':''}, inplace = True, regex=True)
df1l
Out[6]:
Capacity| Color Make
Jane | 1.6 Orange |Ford
John |2.0 Silver |BMW
June | 1.6 Red Mini
Jim |2.2 White |Mercedes
Jay |1.2 White |Toyota

Changing the type of a series

Using astype()

In [7]: dfl.info() # All 3 series currently classified as "object" aka "string"

<class 'pandas.core.frame.DataFrame'>
Index: 5 entries, Jane to Jay
Data columns (total 3 columns):

Capacity 5 non-null object
Color 5 non-null object
Make 5 non-null object

dtypes: object(3)
memory usage: 320.0+ bytes

In [8]: dfl["Color"] = dfl["Color"].astype("category") # Convert color to a categorical variable
dfl["Capacity"] = dfl["Capacity"].astype("float") # Convert capacity to a float

dfl.info() # Here we see the results of the updates - the data didn't change
but the format did, so that now we can e.g. perform calcs on Capacity
which we could not have done while it was classified as an Object

<class 'pandas.core.frame.DataFrame'>
Index: 5 entries, Jane to Jay
Data columns (total 3 columns):

Capacity 5 non-null floaté64
Color 5 non-null category
Make 5 non-null object

dtypes: category(l), float64(1l), object(l)
memory usage: 477.0+ bytes

Using pd.to_numeric|)

In [9]:

Out[9]:

In []:

In [10]:

Out[1l0]:

dfl["Capacity"] = dfl["Capacity"].astype("object") # Now let's put Capacity back

dfl.loc["Jane", "Capacity"] = "1l.61" # And then introduce a non-numeric value in one field
df1l
Capacity| Color Make
Jane | 1.6l Orange |Ford
John |2 Silver |BMW
June | 1.6 Red Mini
Jim |2.2 White |Mercedes
Jay |1.2 White |Toyota

dfl["Capacity"] = dfl["Capacity"].astype("float") # THIS script will now end in an error

because the 1 in 1.61 can't be converted

dfl["Capacity"]
dfl

This is an alternative method to convert data types - the argument errors = "coerce"

1is pretty handy if your data has some exceptions in it, fills NaN where no conversion is possible
pd.to_datetime() also has errors = "coerce" which can be useful

pd.to numeric(dfl["Capacity"], errors = "coerce")

Capacity| Color Make
Jane | NaN Orange | Ford
John|2.0 Silver |BMW
June | 1.6 Red Mini
Jim |2.2 White [Mercedes
Jay |1.2 White |Toyota

Dealing with null values

Filling with another default value

In [11]: dfl["Capacity"].fillna(0, inplace = True) # Fills the NaN values in the series with the specified value
or indeed the entire dataframe (which would seldom make sense!)

dfl
Out[1l1l]:

Capacity| Color Make
Jane | 0.0 Orange |Ford
John|2.0 Silver |BMW
June | 1.6 Red Mini
Jim |2.2 White [Mercedes
Jay |1.2 White |Toyota

Removing rows with NaN

In [12]: # Here are some additional ways to deal with them:
df.dropna() Removes ALL rows in the entire dataframe with
one or more null values
df.dropna(how = 'all' Removes only rows where all columns contain null values
df.dropna(subset = [“Column name”]) Removes rows only where there is a null value in the
specified column name

Altering the shape of the dataframe

Adding columns quickly

In [13]:

Out[13]:

df1["Model"] = ""

dfl
Capacity| Color Make | Model
Jane | 0.0 Orange |Ford
John|2.0 Silver |BMW
June [1.6 Red Mini
Jim (2.2 White [Mercedes
Jay (1.2 White |Toyota

Adding columns at a specified location

In [14]:

Out[14]:

dfl.insert(1l, "Service Interval", "20000km")
df1l
Capacity | Service Interval| Color Make | Model
Jane | 0.0 20000km Orange | Ford
John|2.0 20000km Silver |BMW
June | 1.6 20000km Red Mini
Jim |2.2 20000km White [Mercedes
Jay |1.2 20000km White |Toyota

Adding rows

In [15]: extra row = pd.Series({"Capacity": 1.6, "Color": "Blue", "Make": "Honda", "Model": "Jazz"})

extra row.name = "James"
dfl = dfl.append(extra_ row)
dfl
Out[1l5]:
Capacity | Service Interval| Color Make | Model
Jane |0.0 20000km Orange | Ford
John [2.0 20000km Silver |BMW
June |1.6 20000km Red Mini
Jim 2.2 20000km White |Mercedes
Jay 1.2 20000km White |Toyota
James | 1.6 NaN Blue Honda Jazz

Removing columns

In [16]: dfl.drop("Service Interval", axis = 1, inplace = True) # axis = 1 says you're looking a columns
df1l
out[1l6]:
Capacity| Color Make | Model
Jane |0.0 Orange | Ford
John |2.0 Silver |BMW
June |1.6 Red Mini
Jim 2.2 White [Mercedes
Jay 1.2 White |Toyota
James | 1.6 Blue Honda Jazz

Removing rows

In [17]: dfl.drop("John", axis = 0, inplace = True) # axis = 0 says you're looking a rows
dfl
Out[1l7]:
Capacity| Color Make | Model
Jane |0.0 Orange | Ford
June (1.6 Red Mini
Jim 2.2 White |Mercedes
Jay 1.2 White |Toyota
James (1.6 Blue Honda Jazz
In [18]: dfl = dfl[dfl["Color"] != "White"] # a simple way to remove rows based on a condition
dfl

Out[18]:

Capacity| Color| Make | Model

Jane |0.0 Orange | Ford
June (1.6 Red Mini
James (1.6 Blue Honda | Jazz

Transposing the data

In [19]: dfl = dfl.transpose() # flips the data around if it's more convenient
df1l

Out[19]:

Jane | June | James

Capacity |0 16 |[1.6

Color Orange | Red |Blue

Make Ford Mini |Honda

Model Jazz

