
In [1]: import pandas as pd

In [2]: list1 = ["Jane", "John", "June", "Jim", "Jay"]
list2 = ["Ford", "BMW", "Mini", "Mercedes", "Toyota"]
list3 = ["Blue", "Grey", "Red", "White", "White"]
list4 = ["1.6l", "2.0l", "1.6l", "2.2l", "1.2l"]
df1 = pd.DataFrame({"Make":list2, "Color":list3, "Capacity":list4}, index = list1)
df1

Updating values via indexation

Out[2]:

Capacity Color Make

Jane 1.6l Blue Ford

John 2.0l Grey BMW

June 1.6l Red Mini

Jim 2.2l White Mercedes

Jay 1.2l White Toyota

In [3]: df1.loc["Jane", "Color"] = "Orange" # Jane gives us the rows to update,
 # Color tells us which column to update
df1

In [4]: df1.loc[df1["Color"].isin(["White"]), "Color"] = "Off-White" # The first part gives us the rows to update,
 # The second part tells us which column to updat
e
df1

Replacing values

An example across the entire dataframe, replacing entire cell values

Out[3]:

Capacity Color Make

Jane 1.6l Orange Ford

John 2.0l Grey BMW

June 1.6l Red Mini

Jim 2.2l White Mercedes

Jay 1.2l White Toyota

Out[4]:

Capacity Color Make

Jane 1.6l Orange Ford

John 2.0l Grey BMW

June 1.6l Red Mini

Jim 2.2l Off-White Mercedes

Jay 1.2l Off-White Toyota

In [5]: df1.replace(["Off-White", "Grey"], ["White", "Silver"], inplace = True)
df1

An example for a single series, replacing partial cell values

In [6]: df1["Capacity"].replace({'l':''}, inplace = True, regex=True)
df1

Changing the type of a series

Out[5]:

Capacity Color Make

Jane 1.6l Orange Ford

John 2.0l Silver BMW

June 1.6l Red Mini

Jim 2.2l White Mercedes

Jay 1.2l White Toyota

Out[6]:

Capacity Color Make

Jane 1.6 Orange Ford

John 2.0 Silver BMW

June 1.6 Red Mini

Jim 2.2 White Mercedes

Jay 1.2 White Toyota

Using astype()

In [7]: df1.info() # All 3 series currently classified as "object" aka "string"

In [8]: df1["Color"] = df1["Color"].astype("category") # Convert color to a categorical variable
df1["Capacity"] = df1["Capacity"].astype("float") # Convert capacity to a float

df1.info() # Here we see the results of the updates - the data didn't change
 # but the format did, so that now we can e.g. perform calcs on Capacity
 # which we could not have done while it was classified as an Object

Using pd.to_numeric()

<class 'pandas.core.frame.DataFrame'>
Index: 5 entries, Jane to Jay
Data columns (total 3 columns):
Capacity 5 non-null object
Color 5 non-null object
Make 5 non-null object
dtypes: object(3)
memory usage: 320.0+ bytes

<class 'pandas.core.frame.DataFrame'>
Index: 5 entries, Jane to Jay
Data columns (total 3 columns):
Capacity 5 non-null float64
Color 5 non-null category
Make 5 non-null object
dtypes: category(1), float64(1), object(1)
memory usage: 477.0+ bytes

In [9]: df1["Capacity"] = df1["Capacity"].astype("object") # Now let's put Capacity back
df1.loc["Jane", "Capacity"] = "1.6l" # And then introduce a non-numeric value in one field
df1

In []: df1["Capacity"] = df1["Capacity"].astype("float") # THIS script will now end in an error
 # because the l in 1.6l can't be converted

In [10]: df1["Capacity"] = pd.to_numeric(df1["Capacity"], errors = "coerce")
df1
This is an alternative method to convert data types - the argument errors = "coerce"
is pretty handy if your data has some exceptions in it, fills NaN where no conversion is possible
pd.to_datetime() also has errors = "coerce" which can be useful

Dealing with null values

Out[9]:

Capacity Color Make

Jane 1.6l Orange Ford

John 2 Silver BMW

June 1.6 Red Mini

Jim 2.2 White Mercedes

Jay 1.2 White Toyota

Out[10]:

Capacity Color Make

Jane NaN Orange Ford

John 2.0 Silver BMW

June 1.6 Red Mini

Jim 2.2 White Mercedes

Jay 1.2 White Toyota

Filling with another default value

In [11]: df1["Capacity"].fillna(0, inplace = True) # Fills the NaN values in the series with the specified value
 # or indeed the entire dataframe (which would seldom make sense!)
df1

Removing rows with NaN

In [12]: # Here are some additional ways to deal with them:
df.dropna() Removes ALL rows in the entire dataframe with
one or more null values
df.dropna(how = 'all' Removes only rows where all columns contain null values
df.dropna(subset = [“Column name”]) Removes rows only where there is a null value in the
specified column name

Altering the shape of the dataframe

Adding columns quickly

Out[11]:

Capacity Color Make

Jane 0.0 Orange Ford

John 2.0 Silver BMW

June 1.6 Red Mini

Jim 2.2 White Mercedes

Jay 1.2 White Toyota

In [13]: df1["Model"] = ""
df1

Adding columns at a specified location

In [14]: df1.insert(1, "Service Interval", "20000km")
df1

Adding rows

Out[13]:

Capacity Color Make Model

Jane 0.0 Orange Ford

John 2.0 Silver BMW

June 1.6 Red Mini

Jim 2.2 White Mercedes

Jay 1.2 White Toyota

Out[14]:

Capacity Service Interval Color Make Model

Jane 0.0 20000km Orange Ford

John 2.0 20000km Silver BMW

June 1.6 20000km Red Mini

Jim 2.2 20000km White Mercedes

Jay 1.2 20000km White Toyota

In [15]: extra_row = pd.Series({"Capacity": 1.6, "Color": "Blue", "Make": "Honda", "Model": "Jazz"})
extra_row.name = "James"
df1 = df1.append(extra_row)
df1

Removing columns

In [16]: df1.drop("Service Interval", axis = 1, inplace = True) # axis = 1 says you're looking a columns
df1

Out[15]:

Capacity Service Interval Color Make Model

Jane 0.0 20000km Orange Ford

John 2.0 20000km Silver BMW

June 1.6 20000km Red Mini

Jim 2.2 20000km White Mercedes

Jay 1.2 20000km White Toyota

James 1.6 NaN Blue Honda Jazz

Out[16]:

Capacity Color Make Model

Jane 0.0 Orange Ford

John 2.0 Silver BMW

June 1.6 Red Mini

Jim 2.2 White Mercedes

Jay 1.2 White Toyota

James 1.6 Blue Honda Jazz

Removing rows

In [17]: df1.drop("John", axis = 0, inplace = True) # axis = 0 says you're looking a rows
df1

In [18]: df1 = df1[df1["Color"] != "White"] # a simple way to remove rows based on a condition
df1

Transposing the data

Out[17]:

Capacity Color Make Model

Jane 0.0 Orange Ford

June 1.6 Red Mini

Jim 2.2 White Mercedes

Jay 1.2 White Toyota

James 1.6 Blue Honda Jazz

Out[18]:

Capacity Color Make Model

Jane 0.0 Orange Ford

June 1.6 Red Mini

James 1.6 Blue Honda Jazz

In [19]: df1 = df1.transpose() # flips the data around if it's more convenient
df1

Out[19]:

Jane June James

Capacity 0 1.6 1.6

Color Orange Red Blue

Make Ford Mini Honda

Model Jazz

