THE MECHANICS OF A SIMPLE NEURAL NETWORK
FORWARD PASS - 'THE GUESSING GAME!

The scenario:

We have historical data from a class of
language students going back a few years.
Each student received a % grade for class
assignments, written tests and oral tests
completed during the year (these are our
features), and we also know whether these
students passed or failed their final exam (this
is our target). We'd like to use this data to learn
to predict which of the current year's students
will pass or fail based on their current grades.

|

|

A series of weighted sums:

Remember that the purpose of a weighted sum
is usually to lend more importance to some
aspects and less to others. For example, an
experienced teacher might say ‘usually if a
student does well on the written tests they will
also do well in the final exam' and so that
teacher would give greater weight to the written
test grades compared to the other grades. But
at the outset our neural net has no experience,
so it starts with some random weights and has
a guess at the answer. The rest of the process
will be about evaluating the answers and
refining those weights until they are at the
optimal point where generally the network will
correctly predict whether the student will pass

Lor fail.

he activation function:

Nerual networks always employ an activation

function. In this example we're using the

sigmoid activation function, which is serving 2

purposes:

e Itintroduces an element of 'non-linearity’
so that our network can learn O

e It's giving an output between 0 and 1 which
can be translated into 'the probability the
student will pass' — we could perhaps even
think of it as the student's final grade!

The activation function is literally sometimes
referred to as the 'squishification function'!
1+

O

Inputs 1 x 3 tensor

oO|O0|O

Input layer

features

Class assignments

Written tests

Oral tests

non-linearity? if our activation

function was linear, we would just
amplify the already-apparent
signal which wouldn't get us very
far; by using a non-linear
activation function we can adjust
the relationships between weights
so that we can learn more
omplex relationships...

Weights, 3 x 2 tensor

Hidden layer 1 x 2 tensor

O| 0O 0| O
(ol
Oo| 0O

Hidden layer

Our generic formula to do the

weighted sum or dot product

that moves us from the input
layer to the hidden layer is:

a(WX +b)
T

or in longhand for our specific scenario:

v

H=o0 (W111X 1+ W211X2 + W311X 3)

Hy = a(WihXq + WiaX, + WisX3)

\

matrix multiplication — our shapes at each point

Weights; 2 x 1 tensor Output 1 x 1 tensor

o o

o

Output layer

sigmoid activation function

we can think of these hidden nodes almost
as 'interim' models: Hi says 'using this 1st set
of weights, | think the student will pass', but
H2 says 'yes but when | use the 2nd set of
weights it appears the student will fail'

Our generic formula to move
from the hidden layer to the
output layer is:

a(W?2H +b)
, | ,

or in longhand for this case:

v

§ = o(WhiH, + WAH,)

aka the sigmoid of the weighted sum or the dot product

pass final exam?

ory

AN

our model's final prediction



https://en.wikipedia.org/wiki/Sigmoid_function
https://www.investopedia.com/terms/n/nonlinearity.asp

THE MECHANICS OF A SIMPLE NEURAL NETWORK

BACK PROPAGATION -'"THE BLAME GAME'

How'd | do?

In the forward pass we 'guessed' an answer
(§). We can now evaluate this answer by
comparing it with the correct answer (y) which
gives us the error. There are many different
error functions (aka cost functions, loss
functions, objective functions!) — the one we will

use here is known as bhinary cross-entropy:

EW) = X%, yiIn§;) + (1-y))  In(L-§;)

L

Gradient descent recap:

Our error function tells us how far off our guess
was. If we were to plot an error function, we
would see a curve similar to this one:

f

error

our goal

v

weight

Our goal is to find the point where the weight
will result in 0 error! By finding the slope (or
gradient) of the curve at the point where we
guessed and got an error, we can figure out
how to reduce (or minimize) the error.
Remember that finding the slope of a curve is
just finding the derivative at that point, in other
words finding the derivative (or delta) of the
error with respect to the weight ( g = Z_E ).

w

If the slope turns out to be negative like the
point on the left, we want to increase the weight
to get closer to the goal. If the slope turns out to
be positive like the point on the right, we want
to decrease the weight to get closer to the goal.
Therefore, our step will be - VE (that negative
lets us go in a reducing direction).

And finally, we only want to take small steps in
the right direction, so we don't overshoot our

goal. Alpha « or learning rate determines the
size of the step, so our final formula will be:
dE

w; = w;aVE orinfullerform w; = w;a——
i

Input layer

features

l

Class assignments

Written tests

Oral tests

In English:

~

Our updated weight (w;) or 'w-i-

prime' is equal to our original
weight (w;), multiplied by the
delta of our error, multiplied by
our chosen learning rate (@).

= w! —a(y—-y).X;

Hidden layer

Update the weights, do forward propagation, repeat until predictions are looking good (i.e. error is low)!

d

wf —a(§—y).H;

sigmoid activation function

So it turns out that after simplification, using various deritvative rules like the chain rule,
there is a very simple formula to update the weights in this scenario (that being where our
final output is the sigmoid of the network's output, and binary-cross entropy was used to

calculate the error):

wi=w;—a(y—y).x;

J

But wait! Our error is the result of eight different weights like this:
EW)=E (W111: W211: W311' W112: + W212: W312, W121» W221)
Therefore our multi-dimensional 'gradient' becomes a vector of

the partial derivatives of the error with respect to all the weights:

0E OE 0E 0E 0E 0E 0E OE

VE =
awl ' awl ' awd ' awl,’ oawl’ owl,’ aw?’ awl

And our updated weight formula changes to reflect this:

0E
rk _ k
”l}

This makes it super-efficient for our network's weights to get updated, which also means it
will perform well! If we had a bias term, the formula is very similar:

b =b—-a—-y).l

Why H? Because H is the input to
our final output layer, just as X is
the input to the hidden layer...

Output layer

pass final exam?

You can visit the delightfully eye-watering
math to get this solution here!

4
Wr°CO
/

Oh dear! Do | need to study Calculus
for the next 2 years so | can do that
math? No! Even Andrew Trask in his
(very highly recommended) book
'Grokking Deep Learning' says I'm
going to do what I typically do in
real life (cuz I'm lazy — | mean
efficient): look up the derivative
in a reference table.


https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://www.mathsisfun.com/calculus/derivatives-introduction.html
https://www.mathsisfun.com/calculus/derivatives-introduction.html
https://en.wikipedia.org/wiki/Learning_rate
https://www.mathsisfun.com/calculus/derivatives-partial.html
https://www.manning.com/books/grokking-deep-learning
https://shotlefttodatascience.com/2020/05/10/calculus-rules-to-live-by/
http://cs230.stanford.edu/fall2018/section_files/section3_soln.pdf

