
THE MECHANICS OF A SIMPLE NEURAL NETWORK 

FORWARD PASS – 'THE GUESSING GAME' 
 
  
  

or in longhand for our specific scenario: 

Our generic formula to do the 
weighted sum or dot product 
that moves us from the input 
layer to the hidden layer is: 

Our generic formula to move 
from the hidden layer to the 

output layer is: 

or in longhand for this case: 

aka the sigmoid of the  weighted sum or the dot product 

The scenario: 
 
We have historical data from a class of 
language students going back a few years. 
Each student received a % grade for class 
assignments, written tests and oral tests 
completed during the year (these are our 
features), and we also know whether these 
students passed or failed their final exam (this 
is our target). We'd like to use this data to learn 
to predict which of the current year's students 
will pass or fail based on their current grades. 

The activation function: 
 
Nerual networks always employ an activation 
function. In this example we're using the 
sigmoid activation function, which is serving 2 
purposes: 

• It introduces an element of 'non-linearity' 
so that our network can learn 

• It's giving an output between 0 and 1 which 
can be translated into 'the probability the 
student will pass' – we could perhaps even 
think of it as the student's final grade! 

 

The activation function is literally sometimes 
referred to as the 'squishification function'! 

σ 
 

matrix multiplication – our shapes at each point 

A series of weighted sums: 
 
Remember that the purpose of a weighted sum 
is usually to lend more importance to some 
aspects and less to others. For example, an 
experienced teacher might say 'usually if a 
student does well on the written tests they will 
also do well in the final exam' and so that 
teacher would give greater weight to the written 
test grades compared to the other grades. But 
at the outset our neural net has no experience, 
so it starts with some random weights and has 
a guess at the answer. The rest of the process 
will be about evaluating the answers and 
refining those weights until they are at the 
optimal point where generally the network will 
correctly predict whether the student will pass 
or fail. 

our model's final prediction  

we can think of these hidden nodes almost 
as 'interim' models: H1 says 'using this 1st set 
of weights, I think the student will pass', but 
H2 says 'yes but when I use the 2nd set of 
weights it appears the student will fail'  

 

non-linearity? if our activation 
function was linear, we would just 
amplify the already-apparent 
signal which wouldn't get us very 
far; by using a non-linear 
activation function we can adjust 
the relationships between weights 
so that we can learn more 
complex relationships… 

https://en.wikipedia.org/wiki/Sigmoid_function
https://www.investopedia.com/terms/n/nonlinearity.asp


THE MECHANICS OF A SIMPLE NEURAL NETWORK 

BACK PROPAGATION – 'THE BLAME GAME' 
 
  
 

How'd I do? 
 
In the forward pass we 'guessed' an answer 

(ŷ). We can now evaluate this answer by 

comparing it with the correct answer (y) which 
gives us the error. There are many different 
error functions (aka cost functions, loss 
functions, objective functions!) – the one we will 
use here is known as binary cross-entropy: 

Gradient descent recap: 
 
Our error function tells us how far off our guess 
was. If we were to plot an error function, we 
would see a curve similar to this one: 

Our goal is to find the point where the weight 
will result in 0 error! By finding the slope (or 
gradient) of the curve at the point where we 
guessed and got an error, we can figure out 
how to reduce (or minimize) the error. 
Remember that finding the slope of a curve is 
just finding the derivative at that point, in other 
words finding the derivative (or delta) of the 
error with respect to the weight (      =        ). 
 
If the slope turns out to be negative like the 
point on the left, we want to increase the weight 
to get closer to the goal. If the slope turns out to 
be positive like the point on the right, we want 
to decrease the weight to get closer to the goal. 
Therefore, our step will be -       (that negative 
lets us go in a reducing direction). 
 
And finally, we only want to take small steps in 
the right direction, so we don't overshoot our 

goal. Alpha 𝛼 or learning rate determines the 

size of the step, so our final formula will be: 
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In English:  
 

Our updated weight (𝑤𝑖
′) or 'w-i-

prime' is equal to our original 

weight (𝑤𝑖), multiplied by the 

delta of our error, multiplied by 

our chosen learning rate (𝛼). 

But wait! Our error is the result of eight different weights like this:  
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Therefore our multi-dimensional 'gradient' becomes a vector of 
the partial derivatives of the error with respect to all the weights: 
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And our updated weight formula changes to reflect this: 

𝑊′ 𝑖𝑗
 𝑘 = 𝑊 𝑖𝑗

𝑘 − 𝛼
𝜕𝐸

𝜕𝑊 𝑖𝑗
𝑘

 

So it turns out that after simplification, using various deritvative rules like the chain rule, 
there is a very simple formula to update the weights in this scenario (that being where our 
final output is the sigmoid of the network's output, and binary-cross entropy was used to 
calculate the error): 
 

𝑤𝑖
′ =  𝑤𝑖 − 𝛼( ŷ − y). 𝑥𝑖 

 

This makes it super-efficient for our network's weights to get updated, which also means it 
will perform well! If we had a bias term, the formula is very similar: 
 

𝑏′  =  𝑏 − 𝛼(ŷ − y). 1 
 

You can visit the delightfully eye-watering  
math to get this solution here! 

Update the weights, do forward propagation, repeat until predictions are looking good (i.e. error is low)! 

Why H? Because H is the input to 
our final output layer, just as X is 
the input to the hidden layer… 

 

Oh dear! Do I need to study Calculus 
for the next 2 years so I can do that 
math? No! Even Andrew Trask in his 
(very highly recommended) book 
'Grokking Deep Learning' says I'm 
going to do what I typically do in  
real life (cuz I'm lazy – I mean  
efficient): look up the derivative 
 in a reference table. 
 

 

https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://www.mathsisfun.com/calculus/derivatives-introduction.html
https://www.mathsisfun.com/calculus/derivatives-introduction.html
https://en.wikipedia.org/wiki/Learning_rate
https://www.mathsisfun.com/calculus/derivatives-partial.html
https://shotlefttodatascience.com/2020/05/10/calculus-rules-to-live-by/
http://cs230.stanford.edu/fall2018/section_files/section3_soln.pdf
https://www.manning.com/books/grokking-deep-learning

